Computational Homogenization and Multi-Scale Modelling Employing an Image-Based Approach for the Structural Analysis of Shells
This project focusses on the in-silico design of thin, curved carbon-fibre reinforced concrete shell structures using the finite element method (FEM). With respect to efficiency, especially shell elements are suitable. In the scope of this project a numerical multi-scale model is to be developed. By homogenization of a representative volume element, which is able to incorporate shell kinematics (SRVE), the modelling of the carbon-fibre reinforcement and the use of 3D material laws is possible. To allow for geometrical and physical nonlinearities a coupled multi-scale method is used for calculation (FE2-method).
To reduce the numerical cost a new formulation based on the scaled-boundary finite element method (SBFEM) is used. The geometry is described using NURBS-based shape functions. This results in an isogeometric analysis for scaled boundaries (SBIGA).
Imaging techniques are used to create and validate the model. Using Level-Set or Marching-Cubes algorithms the surface description of the carbon-fibre rovings and the concrete are extracted from CT data. Using the above-mentioned element formulation, a numerical model of the structure is obtained.
Associated with the project C03 is the supplementary project C03*: Computational Homogenization and Multi-Scale Modelling Employing an Image-Based Approach for the Structural Analysis of Shells.


Scientists
![Prof. Dr.-Ing. habil. Sven Klinkel [Translate to English:] Sven Klinkel](/fileadmin/_processed_/c/f/csm_A-Klinkel_Quadratisch_bd2b0ef37c.jpg)
D-52074 Aachen

D-52074 Aachen
Cooperations
Publikationen | Publications
Chasapi, M.; Mester, L.; Simeon, B.; Klinkel, S. (2022) Isogeometric analysis of 3D solids in boundary representation for problems in nonlinear solid mechanics and structural dynamics in: Int J Numer Methods Eng 123, issue 5, p. 1228–1252– DOI: 10.1002/nme.6893
Mester, L.; Klarmann, S.; Klinkel, S. (2021) A homogenisation approach for shell structures using scaled boundary isogeometric analysis on RVE-level in: Proc. Appl. Math. Mech. 21, issue 1 – Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), 15.–19.03.2021 in Kassel, e202100157, 2 p. – DOI: 10.1002/pamm.202100157
Mester, L.; Klarmann, S.; Klinkel, S. (2023) Homogenisation for macroscopic shell structures with application to textile‐reinforced mesostructures in: Proc. Appl. Math. Mech. 22, issue 1 – Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), e202200137 – DOI: 10.1002/pamm.202200137
Mester, L.; Klempt, V.; Wagner, F.; Scheerer, S.; Klarmann, S.; Vakaliuk, I.; Curbach, M.; Maas, H.-G.; Löhnert, S.; Klinkel, S. (2023) A Comparison of Multiscale Methods for the Modelling of Carbon-Reinforced Concrete Structures in: Ilki, A.; Çavunt, D.; Çavunt, Y. S. [eds.] Building for the Future: Durable, Sustainable, Resilient – Proc. of fib Symposium 2023, 05.–07.06.2023 in Istanbul (Turkey), publ. in: Lecture Notes in Civil Engineering 350, Cham: Springer, p. 1418–1427 – DOI: 10.1007/978-3-031-32511-3_145
Mester, L.; Wagner, F.; Liebold, F.; Klarmann, S.; Maas, H.-G.; Klinkel, S. (2022) Image-based modelling of carbon-fibre reinforced concrete shell structures in: Stokkeland, S.; Braarud, H. C. [eds.] Concrete Innovation for Sustainability – Proc. for the 6th fib International Congress 2022, 12.–16.06.2022 in Oslo (Norway), Oslo: Novus Press, p. 1631–1640.
Studentische Arbeiten | Student's works
Krusche, J. (2023) Bildgebende Verfahren zur Modellierung von Carbonbeton [Bachelorarbeit].
Sevindik, J. (2023) Entwicklung und Implementierung eines Pre-Prozessors zur Verarbeitung von NURBS-Oberflächen im Rahmen der Scaled Boundary Isogeometric Analysis [Bachelorarbeit].
Lenze, C. (2023) The Influence of the Scaling Center Position on the Uniqueness of Solutions in the Scaled Boundary Finite Element Method [Bachelor’s thesis].
Elisová, A. (2022) Comparison of Different Numerical Models for Concrete and their Implementation [Master’s thesis]. mit | with C03*
Spahn, F. (2022) Development and Implementation of a Scaled Boundary Formulation for Slender Beam-like Structures for Anisotropic Fibre-Matrix Materials [Master’s thesis].
Pierick, B. (2021) Computation of the scaling center for arbitrarily shaped polygons for the application in the Scaled Boundary Finite Element Method using Deep Convolutional Neural Networks [Bachelor’s thesis].